Non-normal numbers: Full Hausdorff dimensionality vs zero dimensionality

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wiener Way to Dimensionality

This note introduces a new general conjecture correlating the dimensionality dT of an infinite lattice with N nodes to the asymptotic value of its Wiener Index W(N). In the limit of large N the general asymptotic behavior W(N)≈Ns is proposed, where the exponent s and dT are related by the conjectured formula s=2+1/dT allowing a new definition of dimensionality dW=(s-2)-1. Being related to the t...

متن کامل

Non-Linear Dimensionality Reduction

A method for creating a non–linear encoder–decoder for multidimensional data with compact representations is presented. The commonly used technique of autoassociation is extended to allow non–linear representations, and an objective function which penalizes activations of individual hidden units is shown to result in minimum dimensional encodings with respect to allowable error in reconstruction.

متن کامل

Effective zero-dimensionality for computable metric spaces

We begin to study classical dimension theory from the computable analysis (TTE) point of view. For computable metric spaces, several effectivisations of zerodimensionality are shown to be equivalent. The part of this characterisation that concerns covering dimension extends to higher dimensions and to closed shrinkings of finite open covers. To deal with zero-dimensional subspaces uniformly, fo...

متن کامل

Zero-dimensionality of Some Pseudocompact Groups

We prove that hereditarily disconnected countably compact groups are zero-dimensional. This gives a strongly positive answer to a question of Shakhmatov. We show that hereditary or total disconnectedness yields zerodimensionality in various classes of pseudocompact groups.

متن کامل

Non-redundant Spectral Dimensionality Reduction

Spectral dimensionality reduction algorithms are widely used in numerous domains, including for recognition, segmentation, tracking and visualization. However, despite their popularity, these algorithms suffer from a major limitation known as the “repeated Eigen-directions” phenomenon. That is, many of the embedding coordinates they produce typically capture the same direction along the data ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Mathématiques

سال: 2017

ISSN: 0007-4497

DOI: 10.1016/j.bulsci.2016.04.001